Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Cell Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant and Cell Physiology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Nonsense-Mediated mRNA Decay Factors, UPF1 and UPF3, Contribute to Plant Defense

Authors: Hee-Jeong, Jeong; Young Jin, Kim; Sang Hyon, Kim; Yoon-Ha, Kim; In-Jung, Lee; Yoon Ki, Kim; Jeong Sheop, Shin;

Nonsense-Mediated mRNA Decay Factors, UPF1 and UPF3, Contribute to Plant Defense

Abstract

In Arabidopsis, the NMD-defective mutants upf1-5 and upf3-1 are characterized by dwarfism, curly leaves and late flowering. These phenotypes are similar to those of mutants showing constitutive pathogenesis-related (PR) gene expression, salicylic acid (SA) accumulation and, subsequently, resistance to pathogens. The disease symptoms of upf1-5 and upf3-1 mutants were observed following infection with the virulent pathogen Pst DC3000 with the aim of determining whether the loss of nonsense-mediated mRNA decay (NMD) is involved in disease resistance. These mutant plants showed not only enhanced resistance to Pst DC3000, but also elevated levels of endogenous SA, PR gene transcripts and WRKY transcripts. UPF1 and UPF3 expression was down-regulated in Pst DC3000-infected Arabidopsis plants, but the expression of various NMD target genes was up-regulated. The expression of 10 defense-related genes was elevated in cycloheximide (CHX)-treated plants. The transcriptional ratios of eight of these 10 defense-related genes in CHX-treated to non-treated plants were lower in NMD-defective mutants than in the wild-type plants. These eight defense-related genes are possibly regulated by the NMD mechanism, and it is clear that an alternatively spliced transcript of WRKY62, which contains a premature termination codon, was regulated by this mechanism. Taken together, our results suggest that UPF1 and UPF3, which are key NMD factors, may act as defense-related regulators associated with plant immunity.

Related Organizations
Keywords

Arabidopsis Proteins, Arabidopsis, Down-Regulation, Pseudomonas syringae, Genes, Plant, Nonsense Mediated mRNA Decay, Gene Expression Regulation, Plant, Mutation, Plant Immunity, RNA, Messenger, Cycloheximide, Salicylic Acid, Intramolecular Transferases, RNA Helicases, Disease Resistance, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze