Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1997 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1997
versions View all 2 versions

Topological Constraints on Transvection Between white Genes Within the Transposing Element TE35B in Drosophila melanogaster

Authors: Jennifer Trenear; John Roote; Darin Coulson; David Gubb; Michael Ashburner;

Topological Constraints on Transvection Between white Genes Within the Transposing Element TE35B in Drosophila melanogaster

Abstract

The transposable element TE35B carries two copies of the white (w) gene at 35B1.2 on the second chromosome. These w genes are suppressed in a zeste-1 (z1) mutant background in a synapsis-dependent manner. Single-copy derivatives of the original TE35B stock give red eyes when heterozygous, but zeste eyes when homozygous. TE35B derivatives carrying single, double or triple copies of w were crossed to generate flies carrying from two to five ectopic w genes. Within this range, z1-mediated suppression is insensitive to copynumber and does not distinguish between w genes that are in cis or in trans. Suppression does not require the juxtaposition of even numbers of w genes, but is extremely sensitive to chromosomal topology. When arranged in a tight cluster, in triple-copy TE derivatives, w genes are non-suppressible. Breakpoints falling within TE35B and separating two functional w genes act as partial suppressors of z1. Similarly, breakpoints immediately proximal or distal to both w genes give partial suppression. This transvection-dependent downregulation of w genes may result from mis-activation of the X-chromosome dosage compensation mechanism.

Related Organizations
Keywords

Chromosome Aberrations, Male, Chromosome Mapping, Genes, Insect, Pigments, Biological, Transfection, Drosophila melanogaster, Phenotype, Mutation, DNA Transposable Elements, Animals, Drosophila Proteins, Insect Proteins, Nucleic Acid Conformation, ATP-Binding Cassette Transporters, Female, Eye Proteins, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
hybrid