Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2006
versions View all 3 versions

ATP Binding to PAN or the 26S ATPases Causes Association with the 20S Proteasome, Gate Opening, and Translocation of Unfolded Proteins

Authors: Smith, David M.; Kafri, Galit; Cheng, Yifan; Ng, David; Walz, Thomas; Goldberg, Alfred L.;

ATP Binding to PAN or the 26S ATPases Causes Association with the 20S Proteasome, Gate Opening, and Translocation of Unfolded Proteins

Abstract

The archaeal ATPase complex PAN, the homolog of the eukaryotic 26S proteasome-regulatory ATPases, was shown to associate transiently with the 20S proteasome upon binding of ATP or ATPgammaS, but not ADP. By electron microscopy (EM), PAN appears as a two-ring structure, capping the 20S, and resembles two densities in the 19S complex. The N termini of the archaeal 20S alpha subunits were found to function as a gate that prevents entry of seven-residue peptides but allows entry of tetrapeptides. Upon association with the 20S particle, PAN stimulates gate opening. Although degradation of globular proteins requires ATP hydrolysis, the PAN-20S complex with ATPgammaS translocates and degrades unfolded and denatured proteins. Rabbit 26S proteasomes also degrade these unfolded proteins upon ATP binding, without hydrolysis. Thus, although unfolding requires energy from ATP hydrolysis, ATP binding alone supports ATPase-20S association, gate opening, and translocation of unfolded substrates into the proteasome, which can occur by facilitated diffusion through the ATPase.

Related Organizations
Keywords

Adenosine Triphosphatases, Proteasome Endopeptidase Complex, Protein Folding, Time Factors, Proteins, Cell Biology, Models, Biological, Protein Transport, Adenosine Triphosphate, Animals, Rabbits, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    227
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
227
Top 1%
Top 1%
Top 1%
hybrid