Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemistry (Moscow...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemistry (Moscow)
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Study of the inhibitory effect of fatty acids on the interaction between DNA and polymerase β

Authors: Jun, Yang; Jing, Yang; Zheng-Qin, Yin; Jing, Xu; Ning, Hu; I, Svir; Min, Wang; +4 Authors

Study of the inhibitory effect of fatty acids on the interaction between DNA and polymerase β

Abstract

The binding of human DNA polymerase beta (pol beta) to DNA template-primer duplex and single-stranded DNA in the absence or presence of pol beta inhibitors has been studied using a surface plasmon resonance biosensor. Two fatty acids, linoleic acid and nervonic acid, were used as potent pol beta inhibitors. In the interaction between pol beta and DNA, pol beta could bind to ssDNA in a single binding mode, but bound to DNA template-primer duplexes in a parallel mode. Both pol beta inhibitors prevented the binding of pol beta to the single strand overhang and changed the binding from parallel to single mode. The affinities of pol beta to the template-primer duplex region in the presence of nervonic acid or linoleic acid were decreased by 20 and 5 times, respectively. The significant inhibitory effect of nervonic acid on the pol beta-duplex interaction was due to both a 2-fold decrease in the association rate and a 9-fold increase in the dissociation rate. In the presence of linoleic acid, no significant change of association rate was observed, and the decrease in binding affinity of pol beta to DNA was mainly due to 7-fold increase in the dissociation rate.

Related Organizations
Keywords

Base Sequence, Fatty Acids, Molecular Sequence Data, DNA, Single-Stranded, Fatty Acids, Monounsaturated, Linoleic Acid, Kinetics, Humans, Nucleic Acid Conformation, DNA Polymerase beta, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average