Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2016
License: CC BY
Data sources: Apollo
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2016
Data sources: HAL Descartes
https://dx.doi.org/10.60692/p5...
Other literature type . 2016
Data sources: Datacite
https://dx.doi.org/10.60692/pg...
Other literature type . 2016
Data sources: Datacite
versions View all 9 versions

Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1–3

تتوسط الحلزونات برفيباثيك المحفوظة استهداف قطرات الدهون من الشحوم 1–3
Authors: Rowe; Emily R.; Mimmack; Michael L.; Barbosa; Antonio D.; Haider; Afreen; Isaac; Iona; Ouberai; Myriam M.; Thiam; +5 Authors

Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1–3

Abstract

Las perilipinas (PLIN) desempeñan un papel clave en el almacenamiento de energía al orquestar la actividad de las lipasas en la superficie de las gotitas de lípidos. El fracaso de esta actividad da como resultado una enfermedad metabólica grave en los seres humanos. A diferencia de todas las demás proteínas asociadas a gotitas de lípidos, los PLIN se localizan casi exclusivamente en la monocapa de fosfolípidos que rodea la gotita. Para comprender cómo perciben y se asocian con la topología única de la superficie de las gotitas, estudiamos la localización de los PLIN humanos en Saccharomyces cerevisiae, demostrando que el mecanismo de direccionamiento está altamente conservado y que las regiones de repetición de 11 meros son suficientes para el direccionamiento de las gotitas. Las mutaciones diseñadas para interrumpir el plegamiento de esta región en hélices anfipáticas (AH) disminuyeron significativamente el direccionamiento de gotas de lípidos in vivo e in vitro. Finalmente, demostramos un aumento sustancial en la helicidad de esta región en presencia de micelas de detergente, que se evitó mediante una mutación de sentido erróneo que altera AH. Concluimos que las regiones repetidas 11-mer altamente conservadas de los PLIN se dirigen a las gotitas de lípidos al plegarse en AH en la superficie de las gotitas, lo que permite que los PLIN regulen la interfaz entre el núcleo lipídico hidrófobo y su entorno hidrófilo circundante.

Les périlipines (plu) jouent un rôle clé dans le stockage de l'énergie en orchestrant l'activité des lipases à la surface des gouttelettes lipidiques. L'échec de cette activité entraîne une maladie métabolique grave chez l'homme. Contrairement à toutes les autres protéines associées aux gouttelettes lipidiques, les pin se localisent presque exclusivement à la monocouche phospholipidique entourant la gouttelette. Pour comprendre comment ils perçoivent et s'associent à la topologie unique de la surface des gouttelettes, nous avons étudié la localisation des NIP humains chez Saccharomyces cerevisiae, démontrant que le mécanisme de ciblage est hautement conservé et que les régions répétées de 11 mois sont suffisantes pour le ciblage des gouttelettes. Les mutations destinées à perturber le repliement de cette région en hélices amphipathiques (HA) ont significativement diminué le ciblage des gouttelettes lipidiques in vivo et in vitro. Enfin, nous avons mis en évidence une augmentation substantielle de l'hélicité de cette région en présence de micelles détergentes, ce qui a été évité par une mutation faux-sens perturbatrice de l'AH. Nous concluons que les régions répétées hautement conservées de 11 mer des NIP ciblent les gouttelettes lipidiques en se repliant en AH sur la surface des gouttelettes, permettant ainsi aux NIP de réguler l'interface entre le noyau lipidique hydrophobe et son environnement hydrophile environnant.

Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs in Saccharomyces cerevisiae, demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targeting in vivo and in vitro. Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.

تلعب Perilipins (PLINs) دورًا رئيسيًا في تخزين الطاقة من خلال تنسيق نشاط الليباز على سطح قطرات الدهون. يؤدي فشل هذا النشاط إلى مرض استقلابي حاد لدى البشر. على عكس جميع البروتينات الأخرى المرتبطة بالقطرات الدهنية، فإن PLINs تتركز بشكل حصري تقريبًا في الطبقة الأحادية الفوسفورية المحيطة بالقطرة. لفهم كيفية إحساسهم بالطوبولوجيا الفريدة لسطح القطرات وارتباطهم بها، درسنا توطين أرقام التعريف الشخصية البشرية في Saccharomyces cerevisiae، مما يدل على أن آلية الاستهداف محفوظة للغاية وأن مناطق التكرار 11 - mer كافية لاستهداف القطرات. أدت الطفرات المصممة لتعطيل طي هذه المنطقة في الحلزونات البرمائية (AHs) إلى انخفاض كبير في استهداف قطرات الدهون في الجسم الحي وفي المختبر. أخيرًا، أظهرنا زيادة كبيرة في حلزونية هذه المنطقة في وجود مذيلات المنظفات، والتي تم منعها بواسطة طفرة خاطئة تعطيل AH. نستنتج أن مناطق تكرار 11 - mer عالية الحفظ من PLINs تستهدف قطرات الدهون عن طريق الطي في AHs على سطح القطرة، وبالتالي تمكين PLINs من تنظيم الواجهة بين النواة الدهنية غير الآلفة للماء والبيئة المائية المحيطة بها.

Keywords

Models, Molecular, [SDV]Life Sciences [q-bio], Vesicular Transport Proteins, lipid droplet, Gene Expression, Organic chemistry, Biochemistry, Protein Structure, Secondary, Engineering, Copolymer, monolayer, Chlorocebus aethiops, Aqueous solution, Transgenes, Polymer, membrane, Micelles, amphipathic helix, Membrane, Life Sciences, Recombinant Proteins, [SDV] Life Sciences [q-bio], Protein Transport, Chemistry, Phospholipid, perilipin, Physical chemistry, COS Cells, Amphiphile, Hydrophobic and Hydrophilic Interactions, Protein Binding, Perilipin-1, Cell biology, lipodystrophy, 330, Molecular Sequence Data, Biophysics, Lipid droplet, Saccharomyces cerevisiae, Folding (DSP implementation), Perilipin-2, Perilipin-3, Molecular Mechanisms of Photosynthesis and Photoprotection, Membrane Biology, Biochemistry, Genetics and Molecular Biology, Animals, Humans, Protein Interaction Domains and Motifs, Amino Acid Sequence, Protein folding, Molecular Biology, Biology, phospholipid, Lipid Metabolism and Storage in Organisms, 11-mer repeat, Binding Sites, Metabolic Engineering and Synthetic Biology, Membrane Proteins, Biological Transport, Lipid Droplets, membrane targeting, Phosphoproteins, Yeast, Electrical engineering, Mutation, lipolysis, Perilipin Proteins, Carrier Proteins, Sequence Alignment, Micelle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 1%
Green
gold