Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 1998 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 1998
License: Elsevier Non-Commercial
Molecular Cell
Article . 1998
versions View all 3 versions

A Suppressor of Two Essential Checkpoint Genes Identifies a Novel Protein that Negatively Affects dNTP Pools

Authors: Zhao, Xiaolan; Muller, Eric G.D; Rothstein, Rodney;

A Suppressor of Two Essential Checkpoint Genes Identifies a Novel Protein that Negatively Affects dNTP Pools

Abstract

In Saccharomyces cerevisiae, MEC1 and RAD53 are essential for cell growth and checkpoint function. Their essential role in growth can be bypassed by deletion of a novel gene, SML1, which functions after several genes whose overexpression also suppresses mec1 inviability. In addition, sml1 affects various cellular processes analogous to overproducing the large subunit of ribonucleotide reductase, RNR1. These include effects on mitochondrial biogenesis, on the DNA damage response, and on cell growth. Consistent with these observations, the levels of dNTP pools in sml1 delta strains are increased compared to wild-type. This effect is not due to an increase in RNR transcription. Finally, both in vivo and in vitro experiments show that Sml1 binds to Rnr1. We propose that Sml1 inhibits dNTP synthesis posttranslationally by binding directly to Rnr1 and that Mec1 and Rad53 are required to relieve this inhibition.

Related Organizations
Keywords

Genes, Essential, Base Sequence, DNA Repair, Deoxyribonucleotides, Genes, Fungal, Genetic Complementation Test, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Cell Cycle Proteins, Cell Biology, Mitochondria, Fungal Proteins, Checkpoint Kinase 2, Gene Expression Regulation, Fungal, Genes, Lethal, Amino Acid Sequence, Cloning, Molecular, Enzyme Inhibitors, Molecular Biology, Gene Deletion, DNA Damage, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    659
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
659
Top 1%
Top 1%
Top 1%
hybrid