Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biology
Article . 2024
Data sources: DOAJ
versions View all 4 versions

Binning Metagenomic Contigs Using Contig Embedding and Decomposed Tetranucleotide Frequency

Authors: Long Fu; Jiabin Shi; Baohua Huang;

Binning Metagenomic Contigs Using Contig Embedding and Decomposed Tetranucleotide Frequency

Abstract

Metagenomic binning is a crucial step in metagenomic research. It can aggregate the genome sequences belonging to the same microbial species into independent bins. Most existing methods ignore the semantic information of contigs and lack effective processing of tetranucleotide frequency, resulting in insufficient and complex feature information extracted for binning and poor binning results. To address the above problems, we propose CedtBin, a metagenomic binning method based on contig embedding and decomposed tetranucleotide frequency. First, the improved BERT model is used to learn the contigs to obtain their embedding representation. Secondly, the tetranucleotide frequencies are decomposed using a non-negative matrix factorization (NMF) algorithm. After that, the two features are spliced and input into the clustering algorithm for binning. Considering the sensitivity of the DBSCAN clustering algorithm to input parameters, in order to solve the drawbacks of manual parameter input, we also propose an Annoy-DBSCAN algorithm that can adaptively determine the parameters of the DBSCAN algorithm. This algorithm uses Approximate Nearest Neighbors Oh Yeah (Annoy) and combines it with a grid search strategy to find the optimal parameters of the DBSCAN algorithm. On simulated and real datasets, CedtBin achieves better binning results than mainstream methods and can reconstruct more genomes, indicating that the proposed method is effective.

Related Organizations
Keywords

Approximate Nearest Neighbors Oh Yeah (Annoy), metagenomics, binning, non-negative matrix factorization (NMF), QH301-705.5, Biology (General), tetranucleotide, Article, BERT

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold