<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells

Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells
Understanding the generation of neuronal and glial diversity is one of the major goals of developmental neuroscience. The Drosophila CNS midline cells constitute a simple neurogenomic system to study neurogenesis, cell fate acquisition, and neuronal function. Previously, we identified and determined the developmental expression profiles of 224 midline-expressed genes. Here, the expression of 59 transcription factors, signaling proteins, and neural function genes was analyzed using multi-label confocal imaging, and their expression patterns mapped at the single-cell level at multiple stages of CNS development. These maps uniquely identify individual cells and predict potential regulatory events and combinatorial protein interactions that may occur in each midline cell type during their development. Analysis of neural function genes, including those encoding peptide neurotransmitters, neurotransmitter biosynthetic enzymes, transporters, and neurotransmitter receptors, allows functional characterization of each neuronal cell type. This work is essential for a comprehensive genetic analysis of midline cell development that will likely have widespread significance given the high degree of evolutionary conservation of the genes analyzed.
- University of North Carolina at Chapel Hill United States
Central Nervous System, Neurons, Neurogenesis, Gene Expression Profiling, Gene Expression Regulation, Developmental, Cell Biology, Drosophila melanogaster, Mesectoderm, Glia, Animals, Drosophila, Cell Lineage, Transgenes, CNS, Molecular Biology, Neuroglia, In Situ Hybridization, Midline cells, Developmental Biology
Central Nervous System, Neurons, Neurogenesis, Gene Expression Profiling, Gene Expression Regulation, Developmental, Cell Biology, Drosophila melanogaster, Mesectoderm, Glia, Animals, Drosophila, Cell Lineage, Transgenes, CNS, Molecular Biology, Neuroglia, In Situ Hybridization, Midline cells, Developmental Biology
113 Research products, page 1 of 12
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%