Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing

Authors: Asuka, Azuma-Mukai; Hideo, Oguri; Toutai, Mituyama; Zhi Rong, Qian; Kiyoshi, Asai; Haruhiko, Siomi; Mikiko C, Siomi;

Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing

Abstract

Small RNAs triggering RNA silencing are loaded onto Argonautes and then sequence-specifically guide them to target transcripts. Epitope-tagged human Argonautes (hAgo1, hAgo2, hAgo3, and hAgo4) are associated with siRNAs and miRNAs, but only epitope-tagged hAgo2 has been shown to have Slicer activity. Contrarily, how endogenous hAgos behave with respect to small RNA association and target RNA destruction has remained unclear. Here, we produced monoclonal antibodies for individual hAgos. High-throughput pyrosequencing revealed that immunopurified endogenous hAgo2 and hAgo3 associated mostly with miRNAs. Endogenous hAgo3 did not show Slicer function but localized in P-bodies, suggesting that hAgo3 endogenously expressed is, like hAgo2, involved in the miRNA pathway but antagonizes the RNAi activity of hAgo2. Sequence variations of miRNAs were found at both 5′ and 3′ ends, suggesting that multiple mature miRNAs containing different “seed” sequences can arise from one miRNA precursor. The hAgo antibodies we raised are valuable tools for ascertaining the functional behavior of endogenous Argonautes and miRNAs in RNA silencing.

Keywords

Base Sequence, Eukaryotic Initiation Factor-2, Antibodies, Monoclonal, Fluorescent Antibody Technique, Jurkat Cells, MicroRNAs, Mutation, Humans, Immunoprecipitation, RNA Interference, RNA, Small Interfering, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    216
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
216
Top 1%
Top 1%
Top 1%
bronze