Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L

Authors: Qin, F.; Kakimoto, M.; Sakuma, Y.; Maruyama, K.; Yuriko Osakabe; Tran, L.-S.P.; Shinozaki, K.; +1 Authors

Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L

Abstract

SummaryDREB1/CBFs and DREB2s are transcription factors that specifically interact with a cis‐acting element, DRE/CRT, which is involved in the expression of genes responsive to cold and drought stress in Arabidopsis thaliana. The function of DREB1/CBFs has been precisely analyzed and it has been found to activate the expression of many genes responsive to cold stress containing a DRE/CRT sequence in their promoters. However, the regulation and function of DREB2‐type transcription factors remained to be elucidated. In this research, we report the cloning of a DREB2 homolog from maize, ZmDREB2A, whose transcripts were accumulated by cold, dehydration, salt and heat stresses in maize seedlings. Unlike Arabidopsis DREB2A, ZmDREB2A produced two forms of transcripts, and quantitative real‐time PCR analyses demonstrated that only the functional transcription form of ZmDREB2A was significantly induced by stresses. Moreover, the ZmDREB2A protein exhibited considerably high transactivation activity compared with DREB2A in Arabidopsis protoplasts, suggesting that protein modification is not necessary for ZmDREB2A to be active. Constitutive or stress‐inducible expression of ZmDREB2A resulted in an improved drought stress tolerance in plants. Microarray analyses of transgenic plants overexpressing ZmDREB2A revealed that in addition to genes encoding late embryogenesis abundant (LEA) proteins, some genes related to heat shock and detoxification were also upregulated. Furthermore, overexpression of ZmDREB2A also enhanced thermotolerance in transgenic plants, implying that ZmDREB2A may play a dual functional role in mediating the expression of genes responsive to both water stress and heat stress.

Keywords

Hot Temperature, Sequence Homology, Amino Acid, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, 610, Plants, Genetically Modified, Zea mays, Disasters, Gene Expression Regulation, Plant, Amino Acid Sequence, Phylogeny, Oligonucleotide Array Sequence Analysis, Plant Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    390
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
390
Top 1%
Top 1%
Top 1%
bronze