Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Caveolin-1 inhibits TrkA-induced cell death by influencing on TrkA modification associated with tyrosine-490 phosphorylation

Authors: Eun Joo, Jung; Choong Won, Kim;

Caveolin-1 inhibits TrkA-induced cell death by influencing on TrkA modification associated with tyrosine-490 phosphorylation

Abstract

Caveolin-1, a main structural protein constituent of caveolae, plays an important role in the signal transduction, endocytosis, and cholesterol transport. In addition, caveolin-1 has conflictive role in the regulation of cell survival and death depending on intracellular signaling pathways. The receptor tyrosine kinase TrkA has been known to interact with caveolin-1, and exploits multiple functions such as cell survival, death and differentiation. In this report, we investigated how TrkA-induced cell death signaling is regulated by caveolin-1 in both TrkA and caveolin-1 overexpressing stable U2OS cells. Here we show that TrkA co-localizes with caveolin-1 mostly as a large aggresome around nucleus by confocal immunofluorescence microscopy. Interestingly, TrkA-mediated Bak cleavage was suppressed by caveolin-1, indicating an inhibition of TrkA-induced cell death signaling by caveolin-1. Moreover, caveolin-1 altered TrkA modification including tyrosine-490 phosphorylation and unidentified cleavage(s), resulting in the inhibition of TrkA-induced apoptotic cell death. Our results suggest that caveolin-1 could suppress TrkA-mediated pleiotypic effects by altering TrkA modification via functional interaction.

Related Organizations
Keywords

Cell Line, Tumor, Caveolin 1, Nerve Growth Factor, Humans, Tyrosine, Apoptosis, Phosphorylation, Receptor, trkA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average