Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1999 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Regulation of Lens Fiber Cell Differentiation by Transcription Factor c-Maf

Authors: Shimako Kawauchi; Satoru Takahashi; Makoto Nishizawa; Kunio Yasuda; Masayuki Yamamoto; Osamu Nakajima; Masanobu Morita; +1 Authors

Regulation of Lens Fiber Cell Differentiation by Transcription Factor c-Maf

Abstract

To elucidate the regulatory mechanisms underlying lens development, we searched for members of the large Maf family, which are expressed in the mouse lens, and found three, c-Maf, MafB, and Nrl. Of these, the earliest factor expressed in the lens was c-Maf. The expression of c-Maf was most prominent in lens fiber cells and persisted throughout lens development. To examine the functional contribution of c-Maf to lens development, we isolated genomic clones encompassing the murine c-maf gene and carried out its targeted disruption. Insertion of the beta-galactosidase (lacZ) gene into the c-maf locus allowed visualization of c-Maf accumulation in heterozygous mutant mice by staining for LacZ activity. Homozygous mutant embryos and newborns lacked normal lenses. Histological examination of these mice revealed defective differentiation of lens fiber cells. The expression of crystallin genes was severely impaired in the c-maf-null mutant mouse lens. These results demonstrate that c-Maf is an indispensable regulator of lens differentiation during murine development.

Keywords

Base Sequence, Transcription, Genetic, Molecular Sequence Data, Gene Expression Regulation, Developmental, Cell Differentiation, Polymerase Chain Reaction, DNA-Binding Proteins, Mice, Lac Operon, Genes, Reporter, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-maf, Gene Targeting, Lens, Crystalline, Animals, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    245
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
245
Top 10%
Top 1%
Top 1%
gold