Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Nephrocystin-1 interacts directly with Ack1 and is expressed in human collecting duct

Authors: Eley L; Moochhala SH; Simms R; Hildebrandt F; Sayer JA;

Nephrocystin-1 interacts directly with Ack1 and is expressed in human collecting duct

Abstract

Nephronophthisis is characterised by renal fibrosis, tubular basement membrane disruption and corticomedullary cyst formation leading to end stage renal failure. Mutations in NPHP1 account for the underlying genetic defect in 25% of patients with nephronophthisis. Loss of urine concentration ability may be an early feature of nephronophthisis. Using yeast-2-library screening with the SH3 domain of nephrocystin-1 as bait, we identify Ack1 as a novel interaction partner. This interaction is confirmed using exogenous over-expression followed by co-immunoprecipitation. Ack1 is an activated Cdc42-associated kinase, and like nephrocystin-1, is a known interactor of p130Cas. Nephrocystin-1 partially colocalises with Ack1 at cell-cell contacts in IMCD3 cells. In human kidney, nephrocystin-1 expression is limited to cell-cell junctions in renal collecting duct cells. These data define Ack1 as a novel interaction partner of nephrocystin-1 and implicate cell-cell junctions and the renal collecting duct in the pathology of nephronophthisis.

Related Organizations
Keywords

Membrane Proteins, Proteins, Protein-Tyrosine Kinases, Cell Line, src Homology Domains, Cytoskeletal Proteins, Intercellular Junctions, Two-Hybrid System Techniques, Humans, Immunoprecipitation, Kidney Tubules, Collecting, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%