Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2

Authors: Ip, Pak Kan; Shi, Lei; Chen, Yu; Itoh, Yasuhiro; Fu, Wing Yu; Betz, Andrea; Yung, Wing-Ho; +3 Authors

α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2

Abstract

Disrupted cortical neuronal migration is associated with epileptic seizures and developmental delay. However, the molecular mechanism by which disruptions of early cortical development result in neurological symptoms is poorly understood. Here we report α2-chimaerin as a key regulator of cortical neuronal migration and function. In utero suppression of α2-chimaerin arrested neuronal migration at the multipolar stage, leading to accumulation of ectopic neurons in the subcortical region. Mice with such migration defects showed an imbalance between excitation and inhibition in local cortical circuitry and greater susceptibility to convulsant-induced seizures. We further show that α2-chimaerin regulates bipolar transition and neuronal migration through modulating the activity of CRMP-2, a microtubule-associated protein. These findings establish a new α2-chimaerin-dependent mechanism underlying neuronal migration and proper functioning of the cerebral cortex and provide insights into the pathogenesis of seizure-related neurodevelopmental disorders.

Related Organizations
Keywords

Cerebral Cortex, Chimerin 1, Mice, Knockout, Neurons, Mice, Cell Movement, Animals, Intercellular Signaling Peptides and Proteins, Nerve Tissue Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%