Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Medicinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Medicine
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Medicine
Article . 2001
versions View all 2 versions

Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome

Authors: Veerle Compernolle; Jos F.M. Smits; Saran Dugarmaa; Mieke Dewerchin; Marc A. Vos; Milan Stengl; Yoram Rudy; +9 Authors

Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome

Abstract

Deletion of amino-acid residues 1505-1507 (KPQ) in the cardiac SCN5A Na(+) channel causes autosomal dominant prolongation of the electrocardiographic QT interval (long-QT syndrome type 3 or LQT3). Excessive prolongation of the action potential at low heart rates predisposes individuals with LQT3 to fatal arrhythmias, typically at rest or during sleep. Here we report that mice heterozygous for a knock-in KPQ-deletion (SCN5A(Delta/+)) show the essential LQT3 features and spontaneously develop life-threatening polymorphous ventricular arrhythmias. Unexpectedly, sudden accelerations in heart rate or premature beats caused lengthening of the action potential with early afterdepolarization and triggered arrhythmias in Scn5a(Delta/+) mice. Adrenergic agonists normalized the response to rate acceleration in vitro and suppressed arrhythmias upon premature stimulation in vivo. These results show the possible risk of sudden heart-rate accelerations. The Scn5a(Delta/+) mouse with its predisposition for pacing-induced arrhythmia might be useful for the development of new treatments for the LQT3 syndrome.

Keywords

Myocardium, Sodium, Cardiac Pacing, Artificial, Isoproterenol, Arrhythmias, Cardiac, Adrenergic beta-Agonists, Mice, Mutant Strains, Sodium Channels, Membrane Potentials, NAV1.5 Voltage-Gated Sodium Channel, Electrocardiography, Long QT Syndrome, Mice, Animals, Humans, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    235
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
235
Top 10%
Top 1%
Top 1%