Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-κB pathways

Authors: Wang, Jifeng; Zhao, Baobing; Yi, Yuting; Zhang, Wei; Wu, Xuan; Zhang, Lianru; Shen, Yuemao;

Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-κB pathways

Abstract

Mycoepoxydiene (MED) is a cytotoxic polyketide that is isolated from the marine fungal strain Diaporthe sp. HLY-1, which is associated with mangroves; however, the mechanism of action of MED remains unknown. Here, we report the molecular mechanisms of apoptosis activation and growth inhibition induced by MED in MCF-7 cells. The present results show that MED induces DNA damage through the production of reactive oxygen species (ROS), which resulted in the phosphorylation of H2AX and the activation of the Ataxia telangiectasia mutated kinase (ATM) and p53 signaling pathways. In addition, MED increases the accumulation of IκBα and enhances the association between IKKγ and Hsp27 via the activation of Hsp27, which eventually resulted in the inhibition of TNF-α-induced NF-κB transactivation. Therefore, we conclude that MED inhibits MCF-7 cells by simultaneously activating p53 to induce apoptosis and suppressing NF-κB to disrupt cell proliferation. Because small molecules having both of these effects are rare, further exploration of MED as an antitumor lead compound is needed.

Related Organizations
Keywords

p53, Bridged-Ring Compounds, 572, Mycoepoxydiene, Tumor Necrosis Factor-alpha, Cell Cycle, HSP27 Heat-Shock Proteins, NF-kappa B, ROS, Antineoplastic Agents, Apoptosis, Polyketide, Ascomycota, Gene Expression Regulation, Pyrones, Cell Line, Tumor, Humans, Tumor Suppressor Protein p53, Reactive Oxygen Species, Cell Division, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%