Genetic approaches toward understanding the individual variation in cardiac structure, function and responses to exercise training
Genetic approaches toward understanding the individual variation in cardiac structure, function and responses to exercise training
Cardiovascular disease (CVD) accounts for approximately 30% of all deaths worldwide and its prevalence is constantly increasing despite advancements in medical treatments. Cardiac remodeling and dysfunction are independent risk factors for CVD. Recent studies have demonstrated that cardiac structure and function are genetically influenced, suggesting that understanding the genetic basis for cardiac structure and function could provide new insights into developing novel therapeutic targets for CVD. Regular exercise has long been considered a robust nontherapeutic method of treating or preventing CVD. However, recent studies also indicate that there is inter-individual variation in response to exercise. Nevertheless, the genetic basis for cardiac structure and function as well as their responses to exercise training have yet to be fully elucidated. Therefore, this review summarizes accumulated evidence supporting the genetic contribution to these traits, including findings from population-based studies and unbiased large genomic-scale studies in humans.
- Seoul National University of Science and Technology Korea (Republic of)
Review Article
Review Article
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2016IsRelatedTo
- 2003IsRelatedTo
- 2007IsRelatedTo
- 2003IsRelatedTo
- 2020IsRelatedTo
- 2010IsRelatedTo
- 2007IsRelatedTo
- 2020IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
