Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The Ubiquitin-associated Domain of hPLIC-2 Interacts with the Proteasome

Authors: Peter M. Howley; Rodolfo M. Alarcón; Maurits F. Kleijnen;

The Ubiquitin-associated Domain of hPLIC-2 Interacts with the Proteasome

Abstract

The ubiquitin-like hPLIC proteins can associate with proteasomes, and hPLIC overexpression can specifically interfere with ubiquitin-mediated proteolysis ( Kleijnen et al., 2000 ). Because the hPLIC proteins can also interact with certain E3 ubiquitin protein ligases, they may provide a link between the ubiquitination and proteasomal degradation machineries. The amino-terminal ubiquitin-like (ubl) domain is a proteasome-binding domain. Herein, we report that there is a second proteasome-binding domain in hPLIC-2: the carboxyl-terminal ubiquitin-associated (uba) domain. Coimmunoprecipitation experiments of wild-type and mutant hPLIC proteins revealed that the ubl and uba domains each contribute independently to hPLIC-2–proteasome binding. There is specificity for the interaction of the hPLIC-2 uba domain with proteasomes, because uba domains from several other proteins failed to bind proteasomes. Furthermore, the binding of uba domains to polyubiquitinated proteins does not seem to be sufficient for the proteasome binding. Finally, the uba domain is necessary for the ability of full-length hPLIC-2 to interfere with the ubiquitin-mediated proteolysis of p53. The PLIC uba domain has been reported to bind and affect the functions of proteins such as GABAAreceptor and presenilins. It is possible that the function of these proteins may be regulated or mediated through proteasomal degradation pathways.

Related Organizations
Keywords

Proteasome Endopeptidase Complex, Autophagy-Related Proteins, Cell Cycle Proteins, Precipitin Tests, Protein Structure, Tertiary, Cysteine Endopeptidases, Multienzyme Complexes, Humans, Cloning, Molecular, Tumor Suppressor Protein p53, Ubiquitins, Adaptor Proteins, Signal Transducing, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
bronze