Functional analysis of mutant and wild-type Drosophila origin recognition complex
Functional analysis of mutant and wild-type Drosophila origin recognition complex
The origin recognition complex (ORC) is the DNA replication initiator protein in eukaryotes. We have reconstituted a functional recombinant Drosophila ORC and compared activities of the wild-type and several mutant ORC variants. Drosophila ORC is an ATPase, and our studies show that the ORC1 subunit is essential for ATP hydrolysis and for ATP-dependent DNA binding. Moreover, DNA binding by ORC reduces its ATP hydrolysis activity. In vitro , ORC binds to chromatin in an ATP-dependent manner, and this process depends on the functional AAA + nucleotide-binding domain of ORC1. Mutations in the ATP-binding domain of ORC1 are unable to support cell-free DNA replication. However, mutations in the putative ATP-binding domain of either the ORC4 or ORC5 subunits do not affect either of these functions. We also provide evidence that the Drosophila ORC6 subunit is directly required for all of these activities and that a large pool of ORC6 is present in the cytoplasm, cytologically proximal to the cell membrane. Studies reported here provide the first functional dissection of a metazoan initiator and highlight the basic conserved and divergent features among Drosophila and budding yeast ORC complexes.
- Cold Spring Harbor Laboratory United States
- University of California, Berkeley United States
Adenosine Triphosphatases, Cell Nucleus, DNA Replication, Hydrolysis, Cell Membrane, Origin Recognition Complex, Membrane Proteins, Nuclear Proteins, DNA, DNA-Binding Proteins, Adenosine Triphosphate, Drosophila melanogaster, Mutagenesis, Animals, Drosophila Proteins
Adenosine Triphosphatases, Cell Nucleus, DNA Replication, Hydrolysis, Cell Membrane, Origin Recognition Complex, Membrane Proteins, Nuclear Proteins, DNA, DNA-Binding Proteins, Adenosine Triphosphate, Drosophila melanogaster, Mutagenesis, Animals, Drosophila Proteins
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).107 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
