Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Yeast
Article . 2002
versions View all 2 versions

Aquaporin in Candida: characterization of a functional water channel protein

Authors: J M, Carbrey; B P, Cormack; P, Agre;

Aquaporin in Candida: characterization of a functional water channel protein

Abstract

AbstractThe Candida albicans genome database contains one ORF with homology to aquaporins, AQY1. Xenopus oocytes injected with cRNA encoding C. albicans Aqy1p displayed a coefficient of water permeability (Pf) that was equivalent to the Pf for oocytes injected with the cRNA of S. cerevisiae Aqy1p. In addition, as seen in Saccharomyces for Aqy1p and Aqy2p, deletion of AQY1 in C. albicans resulted in cells that were less sensitive than wild‐type to osmotic shock. In Saccharomyces, aquaporin null cells also have a cell surface that is more hydrophobic. However, unlike Saccharomyces, there was no effect on the cell surface hydrophobicity, flocculation or cell aggregation in aqy1 null C. albicans cells. Perhaps as a result, there was no difference between the virulence of C. albicans wild‐type and aqy1 null strains in a murine model for systemic candidiasis. Copyright © 2001 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Male, Mice, Inbred BALB C, Aquaporin 1, Sequence Homology, Amino Acid, Virulence, Surface Properties, Molecular Sequence Data, Candidiasis, Aquaporins, Disease Models, Animal, Mice, Osmotic Pressure, Candida albicans, Animals, Biological Assay, Female, Amino Acid Sequence, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Average