Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Synapsearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Synapse
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Synapse
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Synapse
Article . 1998
versions View all 2 versions

Reduced MPTP neurotoxicity in striatum of the mutant mousetottering

Authors: Kilbourn, Michael R.; Sherman, Phillip S.; Abbott, Louise C.;

Reduced MPTP neurotoxicity in striatum of the mutant mousetottering

Abstract

The effects of MPTP treatment (4 x 10 mg/kg, 2-h intervals) on in vivo striatal binding of (+)-alpha-[3H]dihydrotetrabenazine ((+)-[3H]DTBZ) to the vesicular monoamine transporter type 2 (VMAT2) were examined in wild type (+,+) and tottering (tg/tg) mice of the C57BL/6J strain. The tottering mutant has been previously characterized as having hyperinnervation of noradrenergic terminals in the brain, with increased concentrations of norepinephrine and increased numbers of VMAT2 binding sites. In wild-type mice, MPTP caused a significant decrease in specific striatal (+)-[3H]DTBZ binding in both males (-71%) and females (-57%), consistent with dopaminergic terminal losses. In the tottering mice, the neurotoxic effects of MPTP were diminished, with smaller losses of (+)-[3H]DTBZ binding observed both in males (-45%) and females (-26%). These results are consistent with the hypothesis that vesicular storage (as a result of hyperinnervation) offers neuroprotection toward MPTP toxicity, although the confounding effects of increases in norepinephrine concentrations or changes in calcium ion channel function (both also characteristics of the tottering mutant) cannot be ruled out. The tottering mutant does, however, offer another animal model to examine the biochemical features responsible for MPTP toxicity.

Keywords

Male, Science, Dopamine, Neurotoxins, Presynaptic Terminals, Mice, Mice, Neurologic Mutants, Life and Medical Sciences, Species Specificity, Vesicular Biogenic Amine Transport Proteins, Health Sciences, Animals, Tissue Distribution, Cellular and Developmental Biology, Neurotransmitter Agents, Membrane Glycoproteins, Neuropeptides, Neurosciences, Molecular, Brain, MPTP Poisoning, Membrane Transport Proteins, Mice, Inbred C57BL, Neostriatum, Vesicular Monoamine Transport Proteins, Female, Public Health, Neurology and Psychiatry, Neuroscience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Average
bronze