Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia
pmid: 17434465
Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia
Aberrant glutamatergic neurotransmission may underlie the pathogenesis of schizophrenia and metabotropic glutamate receptors (mGluRs) have been implicated in the disease. We have established the localization of the group III mGluR subtype, mGluR8, in the human body and investigated the biological effects of the selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) in schizophrenia-related animal models. The mGlu8 receptor has a widespread CNS distribution with expression observed in key brain regions associated with schizophrenia pathogenesis including the hippocampus. (S)-3,4-DCPG inhibited synaptic transmission and increased paired-pulse facilitation in rat hippocampal slices supporting the role of mGluR8 as a presynaptic autoreceptor. Using the rat Maximal Electroshock Seizure Threshold (MEST) test, (S)-3,4-DCPG (30 mg/kg, i.p.) reduced seizure activity confirming the compound to be centrally active following systemic administration. (S)-3,4-DCPG did not reverse (locomotor) hyperactivity induced by acute administration of phenylcyclidine (PCP, 1-32 mg/kg, i.p.) or amphetamine (3-30 mg/kg, i.p.) in Sprague-Dawley rats. However, 10 nmol (i.c.v.) (S)-3.4-DCPG did reverse amphetamine-induced hyperactivity in mice although it also inhibited spontaneous locomotor activity at this dose. In addition, mGluR8 null mutant mouse behavioral phenotyping revealed an anxiety-related phenotype but no deficit in sensorimotor gating. These data provide a potential role for mGluR8 in anxiety and suggest that mGluR8 may not be a therapeutic target for schizophrenia.
- GlaxoSmithKline (United Kingdom) United Kingdom
- Cellzome, GSK, Middlesex, UK.
Male, Mice, Knockout, Electroshock, Glycine, Brain, Phencyclidine, Anxiety, Motor Activity, Benzoates, Rats, Rats, Sprague-Dawley, Amphetamine, Disease Models, Animal, Mice, Dentate Gyrus, Animals, Humans, Anticonvulsants, Central Nervous System Stimulants, Autoreceptors
Male, Mice, Knockout, Electroshock, Glycine, Brain, Phencyclidine, Anxiety, Motor Activity, Benzoates, Rats, Rats, Sprague-Dawley, Amphetamine, Disease Models, Animal, Mice, Dentate Gyrus, Animals, Humans, Anticonvulsants, Central Nervous System Stimulants, Autoreceptors
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
