Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Identification of importin α1 as a novel constituent of RNA stress granules

Authors: Fujimura, Ken; Suzuki, Tomonori; Yasuda, Yoshinari; Murata, Masayuki; Katahira, Jun; Yoneda, Yoshihiro;

Identification of importin α1 as a novel constituent of RNA stress granules

Abstract

Importin alpha is a nuclear transport receptor well established for its ability to mediate importin beta-mediated nuclear import of proteins that possess classical nuclear localization signal (cNLS). Previously, we reported that importin alpha rapidly accumulates to the nucleus in response to H2O2-induced oxidative stress, which implies a role for this protein in stress response. In this study, we show that importin alpha1 (also known as KPNA2 or Rch1), a major subtype of the importin alpha family, localizes to RNA stress granules (SGs), large cytoplasmic bodies that are thought to function as RNA triage sites during stress response. The recruitment of importin alpha1 to SGs was compatible with its nuclear accumulation during heat shock. Depletion of endogenous importin alpha1 using siRNA showed that importin alpha1 regulates the dynamics of SG assembly, and that it promotes cell survival in arsenite-treated cells. These data revealed, for the first time, the involvement of importin alpha in the assembly of RNA granules and its pro-survival role during stress response.

Related Organizations
Keywords

alpha Karyopherins, Arsenites, Cell Survival, Stress response, Nocodazole, Cell Biology, Cytoplasmic Granules, Sodium Compounds, Tubulin Modulators, Importin alpha, Stress, Physiological, Stress granule, Animals, Humans, RNA, Enzyme Inhibitors, RNA, Small Interfering, Molecular Biology, Fluorescence Recovery After Photobleaching, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
hybrid