Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Complex Transcription and Splicing of Odorant Receptor Genes

Authors: Armin, Volz; Anke, Ehlers; Ruth, Younger; Simon, Forbes; John, Trowsdale; Dietmar, Schnorr; Stephan, Beck; +1 Authors

Complex Transcription and Splicing of Odorant Receptor Genes

Abstract

Human major histocompatibility (human leucocyte antigen (HLA)) complex-linked odorant receptor (OR) genes are among the best characterized OR genes in the human genome. In addition to their functions as odorant receptors in olfactory epithelium, they have been suggested to play a role in the fertilization process. Here, we report the first in-depth analysis of their expression and regulation within testicular tissue. Sixteen HLA-linked OR and three non-HLA-linked OR were analyzed. One OR gene (hs6M1-16, in positive transcriptional orientation) exhibited six different transcriptional start sites combined with extensive alternative splicing within the 5'-untranslated region, the coding exon, and the 3'-untranslated region. Long distance splicing, exon sharing, and premature polyadenylation were features of another three OR loci (hs6M1-18, -21, and -27, all upstream of hs6M1-16, but in negative transcriptional orientation). Determination of the transcriptional start sites of these OR genes identified a region of 81 bp with potential bi-directional transcriptional activity. The results demonstrate that HLA-linked OR genes are subject to unusually complex transcriptional regulatory mechanisms.

Related Organizations
Keywords

DNA, Complementary, Base Sequence, Transcription, Genetic, Genetic Linkage, HLA Antigens, Sequence Homology, Nucleic Acid, Molecular Sequence Data, Humans, Receptors, Odorant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
gold