Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article . 2009 . Peer-reviewed
Data sources: Crossref
Development
Article . 2009
versions View all 3 versions

Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development

Authors: Isabel Rodriguez; Sarah J. Bray; Elvira Benítez; Isabel Guerrero;

Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development

Abstract

The regulatory Lines/Drumstick/Bowl gene network is implicated in the integration of patterning information at several stages during development. Here, we show that during Drosophila wing development, Lines prevents Bowl accumulation in the wing primordium, confining its expression to the peripodial epithelium. In cells that lack lines or over-expressing Drumstick, Bowl stabilization is responsible for alterations such as dramatic overgrowths and cell identity changes in the proximodistal patterning owing to aberrant responses to signaling pathways. The complex phenotypes are explained by Bowl repressing the Wingless pathway, the earliest effect seen. In addition, Bowl sequesters the general co-repressor Groucho from repressor complexes functioning in the Notch pathway and in Hedgehog expression, leading to ectopic activity of their targets. Supporting this model, elimination of the Groucho interaction domain in Bowl prevents the activation of the Notch and Hedgehog pathways, although not the repression of the Wingless pathway. Similarly, the effects of ectopic Bowl are partially rescued by co-expression of either Hairless or Master of thickveins, co-repressors that act with Groucho in the Notch and Hedgehog pathways, respectively. We conclude that by preventing Bowl accumulation in the wing, primordial Lines permits the correct balance of nuclear co-repressors that control the activity of the Wingless,Notch and Hedgehog pathways.

Keywords

Male, Notch, Genes, Insect, Wnt1 Protein, Animals, Genetically Modified, Basic Helix-Loop-Helix Transcription Factors, Animals, Drosophila Proteins, Wings, Animal, Hedgehog Proteins, Receptors, Notch, Gene Expression Regulation, Developmental, DNA-Binding Proteins, Repressor Proteins, Wingless, Wing development, Mutation, Drosophila, Female, RNA Interference, Carrier Proteins, Hedgehog, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 44
    download downloads 66
  • 44
    views
    66
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
14
Top 10%
Average
Average
44
66
Green
bronze