Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Society of Nephrology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Distal Colonic K+ Secretion Occurs via BK Channels

Authors: Sausbier, Matthias; Matos, Joana Estéváo do; Sausbier, Ulrike; Beranek, Golo; Arntz, Claudia; Neuhuber, Winfried; Ruth, Peter; +1 Authors

Distal Colonic K+ Secretion Occurs via BK Channels

Abstract

K(+) secretion in the kidney and distal colon is a main determinant of K(+) homeostasis. This study investigated the identity of the relevant luminal secretory K(+) ion channel in distal colon. An Ussing chamber was used to measure ion transport in the recently generated BK channel-deficient (BK(-/-)) mice. BK(-/-) mice display a significant colonic epithelial phenotype with (1) lack of Ba(2+)-sensitive resting K(+) secretion, (2) absence of K(+) secretion stimulated by luminal P2Y(2) and P2Y(4) receptors, (3) absence of luminal Ca(2+) ionophore (A23187)-stimulated K(+) secretion, (4) reduced K(+) and increased Na(+) contents in feces, and (5) an increased colonic Na(+) absorption. In contrast, resting and uridine triphosphate (UTP)-stimulated K(+) secretion was not altered in mice that were deficient for the intermediate conductance Ca(2+)-activated K(+) channel SK4. BK channels localize to the luminal membrane of crypt, and reverse transcription-PCR results confirm the expression of the BK channel alpha-subunit in isolated distal colonic crypts. It is concluded that BK channels are the responsible K(+) channels for resting and stimulated Ca(2+)-activated K(+) secretion in mouse distal colon.

Related Organizations
Keywords

Mice, Inbred C57BL, Mice, Knockout, Mice, Ion Transport, Colon, Potassium, Animals, Large-Conductance Calcium-Activated Potassium Channels, Ion Channel Gating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%