Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2004
versions View all 4 versions

The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila

Authors: Mutsuddi, Mousumi; Marshall, Cameron M; Benzow, Kellie A; Koob, Michael D; Rebay, Ilaria;

The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila

Abstract

Spinocerebellar Ataxia 8 (SCA8) appears unique among triplet repeat expansion-induced neurodegenerative diseases because the predicted gene product is a noncoding RNA. Little is currently known about the normal function of SCA8 in neuronal survival or how repeat expansion contributes to neurodegeneration. To investigate the molecular context in which SCA8 operates, we have expressed the human SCA8 noncoding RNA in Drosophila. SCA8 induces late-onset, progressive neurodegeneration in the Drosophila retina. Using this neurodegenerative phenotype as a sensitized background for a genetic modifier screen, we have identified mutations in four genes: staufen, muscle-blind, split ends, and CG3249. All four encode neuronally expressed RNA binding proteins conserved in Drosophila and humans. Although expression of both wild-type and repeat-expanded SCA8 induce neurodegeneration, the strength of interaction with certain modifiers differs between the two SCA8 backgrounds, suggesting that CUG expansions alter associations with specific RNA binding proteins. Our demonstration that SCA8 can recruit Staufen and that the interaction domain maps to the portion of the SCA8 RNA that undergoes repeat expansion in the human disease suggests a specific mechanism for SCA8 function and disease. Genetic modifiers identified in our SCA8-based screens may provide candidates for designing therapeutic interventions to treat this disease.

Keywords

RNA, Untranslated, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), DNA Mutational Analysis, Gene Expression, RNA-Binding Proteins, Nerve Tissue Proteins, Disease Models, Animal, Microscopy, Electron, Scanning, Animals, Drosophila Proteins, Spinocerebellar Ataxias, Drosophila, Photoreceptor Cells, Invertebrate, RNA, Long Noncoding, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
hybrid