Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry
pmid: 10903181
Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry
ABSTRACT The embryonic midline in vertebrates has been implicated in left-right development, but the mechanisms by which it regulates left-right asymmetric gene expression and organ morphogenesis are unknown. Zebrafish embryos have three domains of left-right asymmetric gene expression that are useful predictors of organ situs. cyclops (nodal), lefty1 and pitx2 are expressed in the left diencephalon; cyclops, lefty2 and pitx2 are expressed in the left heart field; and cyclops and pitx2 are expressed in the left gut primordium. Distinct alterations of these expression patterns in zebrafish midline mutants identify four phenotypic classes that have different degrees of discordance among the brain, heart and gut. These classes help identify two midline domains and several genetic pathways that regulate left-right development. A cyclops-dependent midline domain, associated with the prechordal plate, regulates brain asymmetry but is dispensable for normal heart and gut left-right development. A second midline domain, associated with the anterior notochord, is dependent on no tail, floating head and momo function and is essential for restricting asymmetric gene expression to the left side. Mutants in spadetail or chordino give discordant gene expression among the brain, heart and gut. one-eyed pinhead and schmalspur are necessary for asymmetric gene expression and may mediate signaling from midline domains to lateral tissues. The different phenotypic classes help clarify the apparent disparity of mechanisms proposed to explain left-right development in different vertebrates.
- University of Utah United States
- Center for Children United States
- Huntsman Cancer Institute United States
- University of Utah Health Care United States
Homeodomain Proteins, Gene Expression Profiling, Left-Right Determination Factors, Intracellular Signaling Peptides and Proteins, Brain, Gene Expression, Nuclear Proteins, Heart, Bone Morphogenetic Protein 4, Xenopus Proteins, Transforming Growth Factor beta, Bone Morphogenetic Proteins, Homeobox Protein Nkx-2.5, Animals, Paired Box Transcription Factors, Diencephalon, Digestive System, Zebrafish, Body Patterning, Transcription Factors
Homeodomain Proteins, Gene Expression Profiling, Left-Right Determination Factors, Intracellular Signaling Peptides and Proteins, Brain, Gene Expression, Nuclear Proteins, Heart, Bone Morphogenetic Protein 4, Xenopus Proteins, Transforming Growth Factor beta, Bone Morphogenetic Proteins, Homeobox Protein Nkx-2.5, Animals, Paired Box Transcription Factors, Diencephalon, Digestive System, Zebrafish, Body Patterning, Transcription Factors
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).191 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
