Powered by OpenAIRE graph

Characterizing Substrate Selectivity of Ubiquitin C-Terminal Hydrolase-L3 Using Engineered α-Linked Ubiquitin Substrates

Authors: Mario F, Navarro; Lisa, Carmody; Octavio, Romo-Fewell; Melissa E, Lokensgard; John J, Love;

Characterizing Substrate Selectivity of Ubiquitin C-Terminal Hydrolase-L3 Using Engineered α-Linked Ubiquitin Substrates

Abstract

The ubiquitin-proteasome system (UPS) is highly complex and entails the concerted actions of many enzymes that function to ubiquitinate proteins targeted to the proteasome as well as enzymes that remove and recycle ubiquitin for additional rounds of proteolysis. Ubiquitin C-terminal hydrolase-L3 (UCH-L3) is a human cytosolic deubiquitinase whose precise biological function is not known. It is believed to hydrolyze small peptides or chemical adducts from the C-terminus of ubiquitin that may be remnant from proteasomal processing. In addition, UCH-L3 is a highly effective biotechnological tool that is used to produce small or unstable peptides/proteins recalcitrant to production in Escherichia coli expression systems. Previous research, which explored the substrate selectivity of UCH-L3, demonstrated a substrate size limitation for proteins/peptides expressed as α-linked C-terminal fusions to ubiquitin and also suggested that an additional substrate property may affect UCH-L3 hydrolysis [ Larsen , C. N. et al. (1998) Biochemistry 37 , 3358 - 3368 ]. Using a series of engineered protein substrates, which are similar in size yet differ in secondary structure, we demonstrate that thermal stability is a key factor that significantly affects UCH-L3 hydrolysis. In addition, we show that the thermal stabilities of the engineered substrates are not altered by fusion to ubiquitin and offer a possible mechanism as to how ubiquitin affects the structural and unfolding properties of natural in vivo targets.

Keywords

Models, Molecular, Proteasome Endopeptidase Complex, Sequence Homology, Amino Acid, Protein Conformation, Protein Stability, Ubiquitin, Circular Dichroism, Hydrolysis, Recombinant Fusion Proteins, Molecular Sequence Data, Protein Engineering, Protein Structure, Secondary, Substrate Specificity, Cysteine Endopeptidases, Humans, Amino Acid Sequence, Ubiquitin Thiolesterase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average