Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao genesisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
genesis
Article . 2007
versions View all 2 versions

Drosophila female sterile mutation spoonbill interferes with multiple pathways in oogenesis

Authors: F Shira, Neuman-Silberberg;

Drosophila female sterile mutation spoonbill interferes with multiple pathways in oogenesis

Abstract

Abstractspoonbill is a Drosophila female‐sterile mutation, which displays a range of eggshell and egg chamber patterning defects. Previous analysis has shown that the mutation interfered with the function of two major signaling pathways, GRK/EGFR and DPP. In this report, the nature of spoonbill was further investigated to examine whether it was associated with additional pathways in oogenesis. Clonal analysis, presented here, demonstrated that most of the aberrant phenotypes associated with spoonbill were dependent on a mutant germline. Nevertheless, SPOONBILL may function also in the soma to ensure proper polarization and migration of the border‐cell‐cluster. Further, genetic interaction studies implicated spoonbill in additional unrelated pathways such as the one(s) involved in actin polymerization/depolymerization. Based on the previous data and the results presented here, it is anticipated that spoonbill may encode a multifunctional protein that perhaps coordinately regulated the activity of multiple signaling pathways during oogenesis. genesis 45:369–381, 2007. © 2007 Wiley‐Liss, Inc.

Related Organizations
Keywords

Oogenesis, Mutation, Animals, Drosophila, Female, Genes, Insect, Infertility, Female, Ovum, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average