Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

GluN2B-containing NMDA receptors are upregulated in plasma membranes by the sphingosine-1-phosphate analog FTY720P

Authors: Suzanne, Attiori Essis; Marie-Elaine, Laurier-Laurin; Élise, Pépin; Michel, Cyr; Guy, Massicotte;

GluN2B-containing NMDA receptors are upregulated in plasma membranes by the sphingosine-1-phosphate analog FTY720P

Abstract

Sphingosine-1-phosphate (S1P) is a ceramide derivative serving not only as a regulator of immune properties but also as a modulator of brain functions. To better understand the mechanism underlying the effects of S1P on brain functions, we investigated the potential impact of S1P receptor (S1PR) activation on NMDA receptor subunits. We used acute rat hippocampal slices as a model system, and determined the effects of the active phosphorylated S1P analog, fingolimod (FTY720P) on various NMDA receptors. Treatment with FTY720P significantly increased phosphorylation of GluN2B-containing NMDA receptors at Tyr1472. This effect appears rather specific, as treatment with FTY720P did not modify GluN2B-Tyr1336, GluN2B-Ser1480, GluN2A-Tyr1325 or GluN1-Ser897 phosphorylation. Pre-treatment of hippocampal slices with the compounds W146 and PP1 indicated that FTY720P-induced GluN2B phosphorylation at Tyr1472 epitopes was dependent on activation of S1PR subunit 1 (S1PR1) and Src/Fyn kinase, respectively. Cell surface biotinylation experiments indicated that FTY720P-induced GluN2B phosphorylation at Tyr1472 was also associated with increased levels of GluN1 and GluN2B subunits on membrane surface, whereas no change was observed for GluN2A subunits. We finally demonstrate that FTY720P is inclined to favor Tau and Fyn accumulation on plasma membranes. These results suggest that activation of S1PR1 by FTY720P enhances GluN2B receptor phosphorylation in rat hippocampal slices, resulting in increased levels of GluN1 and GluN2B receptor subunits in neuronal membranes through a mechanism probably involving Fyn and Tau.

Keywords

Male, Analysis of Variance, Time Factors, Cell Membrane, Organophosphonates, In Vitro Techniques, Hippocampus, Receptors, N-Methyl-D-Aspartate, Organophosphates, Rats, Rats, Sprague-Dawley, Receptors, Lysosphingolipid, Sphingosine, Animals, Anilides, Biotinylation, Enzyme Inhibitors, Lysophospholipids, Phosphorylation, Sphingosine-1-Phosphate Receptors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Average