Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Analysis of Conformational Changes during Activation of Protein Kinase Pak2 by Amide Hydrogen/Deuterium Exchange

Authors: David A. Johnson; Yuan-Hao Hsu; Jolinda A. Traugh;

Analysis of Conformational Changes during Activation of Protein Kinase Pak2 by Amide Hydrogen/Deuterium Exchange

Abstract

During apoptotic stress, protein kinase Pak2 is cleaved by caspase 3 to form a heterotetramer that is constitutively activated following autophosphorylation. The active protein kinase migrates slightly slower than the inactive holoenzyme when analyzed by gel filtration, suggesting an expanded conformation. Activation of Pak2 comprises a series of structural changes resulting from caspase cleavage, ATP binding, and autophosphorylation of Pak2. Changes at each step were individually analyzed by amide hydrogen/deuterium exchange coupled with mass spectrometry and compared with inactive Pak2. The auto-inhibited form was shown to bind ATP in the active site, with minor changes in the glycine loop and the autoinhibitory domain (AID). Caspase cleavage produced significant changes in solvent accessibility in the AID and upper lobe of the catalytic domain. Cleavage of ATP-bound Pak2 relaxes the allosteric inhibition, as shown by increased solvent accessibility in the upper and lower lobes, including the G-helix, facilitating the autophosphorylation of two sites required for activation, Ser-141 in the regulatory domain and Thr-402 in the catalytic domain. Autophosphorylation increased the amide hydrogen/deuterium exchange solvent accessibility of the contact region between the AID and the G-helix, the E-F loop, and the N terminus. Thus, activation of Pak2 via caspase cleavage is associated with structural relaxation of Pak2 that allows for complete auto-phosphorylation, resulting in a more comprehensive solvent-exposed and conformationally dynamic enzyme.

Related Organizations
Keywords

Caspase 3, Protein Conformation, Molecular Sequence Data, Molecular Conformation, Thrombin, Deuterium, Protein Structure, Tertiary, Enzyme Activation, p21-Activated Kinases, Animals, Cattle, Amino Acid Sequence, Rabbits, Hydrogen, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
gold