Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight
pmid: 24370435
Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight
The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight.
Male, Glucose Transporter Type 1, Mice, Inbred ICR, Fetal Growth Retardation, Vascular Endothelial Growth Factor Receptor-1, Glucose Transporter Type 3, Placenta, Tunicamycin, Infant, Low Birth Weight, Endoplasmic Reticulum Stress, Fetal Development, Mice, Fetal Weight, Maternal Exposure, Pregnancy, Stress, Physiological, Animals, Female, RNA, Messenger, Transcription Factor CHOP
Male, Glucose Transporter Type 1, Mice, Inbred ICR, Fetal Growth Retardation, Vascular Endothelial Growth Factor Receptor-1, Glucose Transporter Type 3, Placenta, Tunicamycin, Infant, Low Birth Weight, Endoplasmic Reticulum Stress, Fetal Development, Mice, Fetal Weight, Maternal Exposure, Pregnancy, Stress, Physiological, Animals, Female, RNA, Messenger, Transcription Factor CHOP
62 Research products, page 1 of 7
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).65 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
