Inhibiting IFT dynein with ciliobrevin in C. elegans chemosensory cilia
doi: 10.1101/531848
Inhibiting IFT dynein with ciliobrevin in C. elegans chemosensory cilia
AbstractCytoplasmic dyneins play a role in a myriad of cellular processes, such as retrograde intracellular transport and cell division. Small-molecule cytoplasmic dynein antagonists, ciliobrevins, have recently been developed as tools to acutely probe cytoplasmic dynein function. Although widely used to investigate cytoplasmic dynein 1, far fewer studies explore the effect of ciliobrevin on cytoplasmic dynein 2 or IFT dynein. Here, we use ciliobrevin A to partially disrupt IFT dynein in the chemosensory cilia of living C. elegans. Acute, low-concentration ciliobrevin treatment results in shortening of cilia and reduction of transport velocity in both directions. After longer exposure to ciliobrevin, we find concentration-dependent motor accumulations and axonemal deformations. We propose that maintenance of ciliary length requires a high fraction of active IFT-dynein motors, while structural integrity can be preserved by only a few active motors.
2 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
