Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Lipopolysaccharide Activates the Expression of ISG15-specific Protease UBP43 via Interferon Regulatory Factor 3

Authors: Oxana A. Malakhova; Dong-Er Zhang; Christofer J. Hetherington; Michael P. Malakhov;

Lipopolysaccharide Activates the Expression of ISG15-specific Protease UBP43 via Interferon Regulatory Factor 3

Abstract

UBP43 is a protease that specifically removes a ubiquitin-like protein, ISG15, from its targets. Highest levels of UBP43 expression are detected in macrophages and in cell lines of monocytic lineage. Macrophages are important in host defense against bacterial and viral infections. The lipopolysaccharide (LPS) of the bacterial cell wall can mimic bacteria and activate monocytes/macrophages to provoke inflammatory responses. Here, we report that LPS strongly activates UBP43 expression in macrophages, which is paralleled by changes in UBP43 protein levels. Two interferon regulatory factor (IRF) binding sites in the UBP43 promoter are responsible for the induction of UBP43 expression by LPS, as well as for basal UBP43 promoter activity. We have identified two members of the IRF family (IRF-2 and IRF-3) that specifically bind to these sites. IRF-3 plays a primary role in the LPS-inducible activation of the UBP43 gene and IRF-2 confers a basal transcriptional activity to the UBP43 promoter. Furthermore, we demonstrate that LPS treatment increases the amount of ISG15-conjugates in macrophages. Coordinated induction of ISG15 and UBP43 suggests that ISG15 conjugation is a dynamic process and that a critical balance of ISG15-modification should be maintained during innate immune response.

Related Organizations
Keywords

Lipopolysaccharides, Base Sequence, Transcription, Genetic, Molecular Sequence Data, DNA, Cell Line, DNA-Binding Proteins, Mice, Gene Expression Regulation, Endopeptidases, Animals, Cytokines, Interferon Regulatory Factor-3, Promoter Regions, Genetic, Ubiquitin Thiolesterase, Ubiquitins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%
gold