Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Signaling & Be...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Signaling & Behavior
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Gene expression profiling through microarray analysis inArabidopsis thalianacolonized byPseudomonas putidaMTCC5279, a plant growth promoting rhizobacterium

Authors: Suchi, Srivastava; Vasvi, Chaudhry; Aradhana, Mishra; Puneet Singh, Chauhan; Ateequr, Rehman; Archana, Yadav; Narendra, Tuteja; +1 Authors

Gene expression profiling through microarray analysis inArabidopsis thalianacolonized byPseudomonas putidaMTCC5279, a plant growth promoting rhizobacterium

Abstract

Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca⁺² dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.

Keywords

DNA, Plant, Arabidopsis Proteins, Pseudomonas putida, Gene Expression Profiling, Arabidopsis, Gene Expression, Mitosis, Genes, Plant, Microarray Analysis, Meiosis, Bacterial Proteins, Gene Expression Regulation, Plant, Growth Substances

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 1%
Top 10%
Top 10%
gold