Powered by OpenAIRE graph

Rethinking the Excitotoxic Ionic Milieu:The Emerging Role of Zn 2+ in Ischemic Neuronal Injury

Authors: S L, Sensi; J-M, Jeng;

Rethinking the Excitotoxic Ionic Milieu:The Emerging Role of Zn 2+ in Ischemic Neuronal Injury

Abstract

Zn(2+) plays an important role in diverse physiological processes, but when released in excess amounts it is potently neurotoxic. In vivo trans-synaptic movement and subsequent post-synaptic accumulation of intracellular Zn(2+) contributes to the neuronal injury observed in some forms of cerebral ischemia. Zn(2+) may enter neurons through NMDA channels, voltage-sensitive calcium channels, Ca(2+)-permeable AMPA/kainate (Ca-A/K) channels, or Zn(2+)-sensitive membrane transporters. Furthermore, Zn(2+) is also released from intracellular sites such as metallothioneins and mitochondria. The mechanisms by which Zn(2+) exerts its potent neurotoxic effects involve many signaling pathways, including mitochondrial and extra-mitochondrial generation of reactive oxygen species (ROS) and disruption of metabolic enzyme activity, ultimately leading to activation of apoptotic and/or necrotic processes. As is the case with Ca(2+), neuronal mitochondria take up Zn(2+) as a way of modulating cellular Zn(2+) homeostasis. However, excessive mitochondrial Zn(2+) sequestration leads to a marked dysfunction of these organelles, characterized by prolonged ROS generation. Intriguingly, in direct comparison to Ca(2+), Zn(2+) appears to induce these changes with a considerably greater degree of potency. These effects are particularly evident upon large (i.e., micromolar) rises in intracellular Zn(2+) concentration ([Zn(2+)](i)), and likely hasten necrotic neuronal death. In contrast, sub-micromolar [Zn(2+)](i) increases promote release of pro-apoptotic factors, suggesting that different intensities of [Zn(2+)](i) load may activate distinct pathways of injury. Finally, Zn(2+) homeostasis seems particularly sensitive to the environmental changes observed in ischemia, such as acidosis and oxidative stress, indicating that alterations in [Zn(2+)](i) may play a very significant role in the development of ischemic neuronal damage.

Related Organizations
Keywords

Ions, Neurons, Microscopy, Confocal, N-Methylaspartate, Brain, Apoptosis, Biological Transport, Hippocampus, Models, Biological, Mitochondria, Mice, Protein Transport, Cytosol, Ischemia, Synapses, Animals, Homeostasis, Humans, Calcium, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 1%