Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Darrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review D
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review D
Article . 2011 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions

Bulk viscosity coefficients due to phonons and kaons in superfluid color-flavor locked quark matter

Authors: Bierkandt, Robert; Manuel, Cristina;

Bulk viscosity coefficients due to phonons and kaons in superfluid color-flavor locked quark matter

Abstract

We evaluate the three bulk viscosity coefficients $��_1, ��_2$ and $��_3$ in the color-flavor locked (CFL) superfluid phase due to phonons and kaons, which are the lightest modes in that system. We first show that the computation is rather analogous to the computation of the same coefficients in superfluid $^4$He, as due to phonons and rotons. For astrophysical applications, we also find the value of the viscosities when there is a periodic disturbance, and the viscosities also depend on the frequency of the disturbance. In a temperature regime that might be of astrophysical relevance, we find that the contributions of both the phonons and kaons should be considered, and that $��_2$ is much less that the same coefficient in unpaired quark matter

13 pages, 6 figures; Explanations and one reference added; version to be published in Phys. Rev. D

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
bronze