Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm).
Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm).
Mutations in 12 genes regulating Drosophila melanogaster mushroom body (MB) development were each studied in two genetic backgrounds. In all cases, brain structure was qualitatively or quantitatively different after replacement of the "original" genetic background with that of the Canton Special wild-type strain. The mushroom body miniature gene (mbm) was investigated in detail. mbm supports the maintenance of MB Kenyon cell fibers in third instar larvae and their regrowth during metamorphosis. Adult mbm1 mutant females are lacking many or most Kenyon cell fibers and are impaired in MB-mediated associative odor learning. We show here that structural defects in mbm1 are apparent only in combination with an X-linked, dosage-dependent modifier (or modifiers). In the Canton Special genetic background, the mbm1 anatomical phenotype is suppressed, and MBs develop to a normal size. However, the olfactory learning phenotype is not fully restored, suggesting that submicroscopic defects persist in the MBs. Mutant mbm1 flies with full-sized MBs have normal retention but show a specific acquisition deficit that cannot be attributed to reductions in odor avoidance, shock reactivity, or locomotor behavior. We propose that polymorphic gene interactions (in addition to ontogenetic factors) determine MB size and, concomitantly, the ability to recognize and learn odors.
- Max Planck Society Germany
- Max Planck Institute for Biological Cybernetics Germany
Brain Chemistry, Sex Characteristics, Phenotype, Conditioning, Classical, Mutation, Animals, Brain, Drosophila, Locomotion
Brain Chemistry, Sex Characteristics, Phenotype, Conditioning, Classical, Mutation, Animals, Brain, Drosophila, Locomotion
27 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2009IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2001IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).133 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
