Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Cell Biolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Cell Biology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Complexity of the TOR signaling network

Authors: Ken, Inoki; Kun-Liang, Guan;
Abstract

The target of rapamycin (TOR) is a serine/threonine kinase of the phosphatidylinositol kinase-related kinase family and is highly conserved from yeast to mammals. TOR functions as a central regulator of cell growth and is itself regulated by a wide range of signals, including growth factors, nutrients and stress conditions. Recent studies in eukaryotic cells have identified two distinct TOR complexes, TORC1 and TORC2, which phosphorylate different substrates and have distinct physiological functions. Here, we discuss new findings that have extended the complexity of TOR signaling and the different roles of the TORC complexes in yeast, flies and mammals.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, TOR Serine-Threonine Kinases, Cell Communication, Cell Enlargement, Protein Serine-Threonine Kinases, Models, Biological, Phosphatidylinositol 3-Kinases, Multiprotein Complexes, Animals, Drosophila Proteins, Protein Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    161
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
161
Top 10%
Top 1%
Top 1%