Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Immunogeneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunogenetics
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Immunogenetics
Article . 1995
versions View all 2 versions

Physical mapping of the retinoid X receptorB gene in mouse and human

Authors: Asako Ando; Kyoko Kitagawa; Michael F. Seldin; Makoto Mark Taketo; Hidetoshi Inoko; Yukie Yara-Kikuti; Kuniya Abe; +3 Authors

Physical mapping of the retinoid X receptorB gene in mouse and human

Abstract

Retinoid X receptors (RXRs) are zinc finger-containing nuclear transcription factors. They belong to the nuclear receptor superfamily that contains retinoid receptors, vitamin D receptors, thyroid hormone receptors, and steroid hormone receptors as well as the so-called orphan receptors. We previously mapped all three RXR genes on mouse chromosomes, using a panel of Mus spretus-Mus musculus interspecific backcross mice: Namely, the RXRA-gene (Rxra) on Chr 2 near the centromere, the RXRB gene (Rxrb) on Chr 17 in the H2 region, and the RXRG gene (Rxrg) on distal Chr 1. Using cosmid clones that cover the major histocompatibility complex (MHC) region, we determined the precise physical map positions of the gene encoding mouse and human RXRB, respectively. The mouse gene (Rxrb) maps between H2-Ke4 and H2-Ke5: namely, immediately telomeric to H2-Ke4 which encodes a histidine-rich transmembrane protein, and 12 kilobases centromeric to H2-Ke5 which is expressed in lymphoid tissues. Rxrb and H2-Ke4 are transcribed into opposite directions from a CpG-rich promoter of about 250 base pairs. This gene organization is well conserved also in the human genome at the HLA-DP subregion of Chr 6p, underscoring the strong conservation of the gene organization in the MHC region between the two mammals.

Keywords

Base Sequence, Genome, Human, Receptors, Retinoic Acid, Molecular Sequence Data, Chromosome Mapping, Genes, MHC Class I, Muridae, Mice, Retinoid X Receptors, Animals, Humans, Chromosomes, Human, Pair 6, Crosses, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%