Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1999 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Essential Role in Vivo of Upstream Stimulatory Factors for a Normal Dietary Response of the Fatty Acid Synthase Gene in the Liver

Authors: M, Casado; V S, Vallet; A, Kahn; S, Vaulont;

Essential Role in Vivo of Upstream Stimulatory Factors for a Normal Dietary Response of the Fatty Acid Synthase Gene in the Liver

Abstract

In the liver, transcription of several genes encoding lipogenic and glycolytic enzymes, in particular the gene for fatty acid synthase (FAS), is known to be stimulated by dietary carbohydrates. The molecular dissection of the FAS promoter pointed out the critical role of an E box motif, located at position -65 with respect to the start site of transcription, in mediating the glucose- and insulin-dependent regulation of the gene. Upstream stimulatory factors (USF1 and USF2) and sterol response element binding protein 1 (SREBP1) were shown to be able to interact in vitro with this E box. However, to date, the relative contributions of USFs and SREBP1 ex vivo remain controversial. To gain insight into the specific roles of these factors in vivo, we have analyzed the glucose responsiveness of hepatic FAS gene expression in USF1 and USF2 knock-out mice. In both types of mouse lines, defective in either USF1 or USF2, induction of the FAS gene by refeeding a carbohydrate-rich diet was severely delayed, whereas expression of SREBP1 was almost normal and insulin response unchanged. Therefore, USF transactivators, and especially USF1/USF2 heterodimers, seem to be essential to sustain the dietary induction of the FAS gene in the liver.

Keywords

Mice, Knockout, Base Sequence, Nuclear Proteins, DNA, Gene Expression Regulation, Enzymologic, DNA-Binding Proteins, Mice, Liver, CCAAT-Enhancer-Binding Proteins, Dietary Carbohydrates, Animals, Upstream Stimulatory Factors, RNA, Messenger, Fatty Acid Synthases, Promoter Regions, Genetic, Sterol Regulatory Element Binding Protein 1, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
gold