Fondue and transglutaminase in the Drosophila larval clot
pmid: 18222466
Fondue and transglutaminase in the Drosophila larval clot
Hemolymph coagulation is vital for larval hemostasis and important in immunity, yet the molecular basis of coagulation is not well understood in insects. Of the larval clotting factors identified in Drosophila, Fondue is not conserved in other insects, but is notable for its effects on the clot's physical properties, a possible function in the cuticle, and for being a substrate of transglutaminase. Transglutaminase is the only mammalian clotting factor found in Drosophila, and as it acts in coagulation in other invertebrates, it is also likely to be important in clotting in Drosophila. Here we describe a Fondue-GFP fusion construct that labels the cuticle and clot, and show that chemical inhibition and RNAi knockdown of the Drosophila transglutaminase gene affect clot properties and composition in ways similar to knockdown of the fon gene. Thus, Fondue appears to be incorporated into the cuticle and is a key transglutaminase substrate in the clot. This is also the first direct functional confirmation that transglutaminase acts in coagulation in Drosophila.
- Uppsala University Sweden
- Södertörn University Sweden
- Stockholm University Sweden
Transglutaminases, Hemolymph, Larva, Animals, Drosophila Proteins, Drosophila, Blood Proteins
Transglutaminases, Hemolymph, Larva, Animals, Drosophila Proteins, Drosophila, Blood Proteins
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
