Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

PCOLCE2 Encodes a Functional Procollagen C-Proteinase Enhancer (PCPE2) That Is a Collagen-binding Protein Differing in Distribution of Expression and Post-translational Modification from the Previously Described PCPE1

Authors: Douglas R. Keene; Daniel S. Greenspan; Barry M. Steiglitz;

PCOLCE2 Encodes a Functional Procollagen C-Proteinase Enhancer (PCPE2) That Is a Collagen-binding Protein Differing in Distribution of Expression and Post-translational Modification from the Previously Described PCPE1

Abstract

The procollagen COOH-terminal proteinase enhancer (PCPE) is a glycoprotein that binds the COOH-terminal propeptide of type I procollagen and potentiates its cleavage by procollagen C-proteinases, such as bone morphogenetic protein-1 (BMP-1). Recently, sequencing of a human expressed sequence tag, which maps near the primary open angle glaucoma region on chromosome 3q21, showed it to encode a novel protein with only 43% identity with PCPE but with a similar domain structure. Here we show this novel protein to be a functional procollagen COOH-terminal proteinase enhancer with activity comparable with that of PCPE and thus propose the designations PCPE2 and PCPE1, respectively. PCPE2 is shown to have a much more limited distribution of expression than does PCPE1, with strong expression primarily in nonossified cartilage in developing tissues and at high levels in the adult heart. PCPE2 is shown to be a glycoprotein that differs markedly in the nature of its glycosylation from that of PCPE1. PCPE2 is also shown to have markedly stronger affinity for heparin than PCPE1, which may account for higher affinities for cell layers. Unexpectedly, both PCPE1 and PCPE2 were found to be collagen-binding proteins, capable of binding at multiple sites on the triple helical portions of fibrillar collagens and also capable of competing for such binding with procollagen C-proteinases. The latter observations may provide insights into the ways PCPEs affect the kinetics of the C-proteinase reaction and into the physical interactions that occur between procollagen C-proteinases and their substrates.

Keywords

Extracellular Matrix Proteins, Binding Sites, DNA, Complementary, Glycosylation, Heparin, Blotting, Western, Intracellular Signaling Peptides and Proteins, Blotting, Northern, Embryo, Mammalian, Cell Line, Mice, Microscopy, Electron, Enhancer Elements, Genetic, Lectins, Animals, Humans, Amino Acid Sequence, Collagen, In Situ Hybridization, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 10%
Top 10%
Top 10%
gold