Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells

Authors: Norihiro, Tsuneyoshi; Tomoyuki, Sumi; Hiroaki, Onda; Hiroshi, Nojima; Norio, Nakatsuji; Hirofumi, Suemori;

PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells

Abstract

PRDM14 was identified by microarray analysis and was expressed in specifically undifferentiated human ES cells. PRDM14 protein is thought to regulate gene transcription in human ES cells, as it contains a PR domain, a subtype of the SET domain which catalyzes histone methylation. To analyze the function of PRDM14, we performed knock-down and forced expression of PRDM14 in human ES cells. Knock-down of PRDM14 by siRNA induced expression of early differentiation marker genes. Forced expression of PRDM14 suppressed expression of differentiation marker genes in the embryoid body. These results suggest that PRDM14 is involved in the maintenance of the self-renewal of human ES cells by suppression of gene expression.

Related Organizations
Keywords

Gene Expression Regulation, Developmental, RNA-Binding Proteins, Cell Differentiation, Embryo, Mammalian, DNA-Binding Proteins, Repressor Proteins, Humans, Biomarkers, Cells, Cultured, Embryonic Stem Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
bronze