An evolutionary scenario for one of the largest yeast gene families
pmid: 16269202
An evolutionary scenario for one of the largest yeast gene families
The DUP gene family of Saccharomyces cerevisiae comprises 23 members that can be divided into two subfamilies--DUP240 and DUP380. The location of the DUP loci suggests that at least three mechanisms were responsible for their genomic dispersion: nonreciprocal translocation at chromosomal ends, tandem duplication and Ty-associated duplication. The data we present here suggest that these nonessential genes encode proteins that facilitate membrane trafficking processes. Dup240 proteins have three conserved domains (C1, C2 and C3) and two predicted transmembrane segments (H1 and H2). A direct repetition of the C1-H1-H2-C2 module is observed in Dup380p sequences. In this article, we propose an evolutionary model to account for the emergence of the two gene subfamilies.
Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Translocation, Genetic, Evolution, Molecular, Gene Duplication, Multigene Family, Amino Acid Sequence, Phylogeny
Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Translocation, Genetic, Evolution, Molecular, Gene Duplication, Multigene Family, Amino Acid Sequence, Phylogeny
25 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
