Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Deregulated Expression of the Homeobox Gene Cux-1 in Transgenic Mice Results in Downregulation of p27kip1 Expression during Nephrogenesis, Glomerular Abnormalities, and Multiorgan Hyperplasia

Authors: Ledford, Aric W.; Brantley, Jennifer G.; Kemeny, Gabor; Foreman, Tonia L.; Quaggin, Susan E.; Igarashi, Peter; Oberhaus, Stephanie M.; +3 Authors

Deregulated Expression of the Homeobox Gene Cux-1 in Transgenic Mice Results in Downregulation of p27kip1 Expression during Nephrogenesis, Glomerular Abnormalities, and Multiorgan Hyperplasia

Abstract

Cux-1 is a murine homeobox gene that is highly expressed in the developing kidney with expression restricted to the nephrogenic zone. Cux-1 is highly expressed in cyst epithelium of polycystic kidneys from C57BL/6J-cpk/cpk mice, but not in kidneys isolated from age-matched phenotypically normal littermates. To further elucidate the role of Cux-1 in renal development, we generated transgenic mice expressing Cux-1 under the control of the CMV immediate early gene promoter. Mice constitutively expressing Cux-1 developed multiorgan hyperplasia and organomegaly, but not an overall increase in body size. Transgenic kidneys were enlarged 50% by 6 weeks of age, with the increased growth primarily restricted to the cortex. Proliferating cells were found in proximal and distal tubule epithelium throughout the cortex, and the squamous epithelium that normally lines Bowman's capsule was replaced with proximal tubule epithelium. However, the total number of nephrons was not increased. In the developing kidneys of transgenic mice, Cux-1 was ectopically expressed in more highly differentiated tubules and glomeruli, and this was associated with reduced expression of the cyclin kinase inhibitor, p27. Transient transfection experiments revealed that Cux-1 is an inhibitor of p27 promoter activity. These results suggest that Cux-1 regulates cell proliferation during early nephrogenesis by inhibiting expression of p27.

Keywords

proliferation, Immunoblotting, Kidney Glomerulus, Down-Regulation, nephrogenesis, Cell Cycle Proteins, Mice, Transgenic, Kidney, Embryonic and Fetal Development, Mice, In Situ Nick-End Labeling, Animals, Molecular Biology, Genes, Immediate-Early, transgenic, DNA Primers, Base Sequence, Tumor Suppressor Proteins, Genes, Homeobox, hyperplasia, Gene Expression Regulation, Developmental, p27, Cell Biology, Mice, Inbred C57BL, Cux-1, Cell Division, Cyclin-Dependent Kinase Inhibitor p27, cyclin kinase inhibitor, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
hybrid