Downregulation of DEAD-box helicase 21 (DDX21) inhibits proliferation, cell cycle, and tumor growth in colorectal cancer via targeting cell division cycle 5-like (CDC5L)
Downregulation of DEAD-box helicase 21 (DDX21) inhibits proliferation, cell cycle, and tumor growth in colorectal cancer via targeting cell division cycle 5-like (CDC5L)
Identification of novel anti-tumor target is crucial for cancer diagnosis, prognosis, and therapeutic strategy. The study aimed to explore the roles and interaction of DEAD-box helicase 21 (DDX21) and cell division cycle 5-like (CDC5L) in colorectal cancer (CRC) progression. Levels of DDX21 and CDC5L were detected in colorectal cancer cell lines by RT-qPCR and Western blot assay. The role of DDX21 and CDC5L on the cell proliferation, cell cycle and tumor growth were evaluated both in vitro and in vivo. The interaction of DDX21 and CDC5L was predicted by The STRING publicly available data and verified by immunoprecipitation. The results showed that DDX21 was dramatically upregulated in colorectal cancer cells. In vivo and in vitro experiments revealed that downregulation of DDX21 suppressed colorectal cancer cell proliferation, colony formation, cell cycle development, and tumor growth, while overexpression of CDC5L reversed the suppressive effects of DDX21 silencing. Furthermore, DDX21 interacted with CDC5L to exert the tumor-promoting effects in CRC. In summary, the data indicate a novel role for DDX21/CDC5L in the development of CRC, which enrich the therapeutic strategy for CRC.
- Binzhou Medical University China (People's Republic of)
G2 Phase, Mice, Inbred BALB C, Cell Cycle, Down-Regulation, Mice, Nude, Mitosis, RNA-Binding Proteins, Cell Cycle Proteins, DEAD-box RNA Helicases, Gene Expression Regulation, Neoplastic, Mice, Cell Line, Tumor, Disease Progression, Animals, Humans, Female, Gene Silencing, Colorectal Neoplasms, Research Paper, Cell Proliferation, Protein Binding
G2 Phase, Mice, Inbred BALB C, Cell Cycle, Down-Regulation, Mice, Nude, Mitosis, RNA-Binding Proteins, Cell Cycle Proteins, DEAD-box RNA Helicases, Gene Expression Regulation, Neoplastic, Mice, Cell Line, Tumor, Disease Progression, Animals, Humans, Female, Gene Silencing, Colorectal Neoplasms, Research Paper, Cell Proliferation, Protein Binding
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2022IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
