Caenorhabditis elegans Gαq Regulates Egg-Laying Behavior via a PLCβ-Independent and Serotonin-Dependent Signaling Pathway and Likely Functions Both in the Nervous System and in Muscle
Caenorhabditis elegans Gαq Regulates Egg-Laying Behavior via a PLCβ-Independent and Serotonin-Dependent Signaling Pathway and Likely Functions Both in the Nervous System and in Muscle
Abstract egl-30 encodes the single C. elegans ortholog of vertebrate Gαq family members. We analyzed the expression pattern of EGL-30 and found that it is broadly expressed, with highest expression in the nervous system and in pharyngeal muscle. We isolated dominant, gain-of-function alleles of egl-30 as intragenic revertants of an egl-30 reduction-of-function mutation. Using these gain-of-function mutants and existing reduction-of-function mutants, we examined the site and mode of action of EGL-30. On the basis of pharmacological analysis, it has been determined that egl-30 functions both in the nervous system and in the vulval muscles for egg-laying behavior. Genetic epistasis over mutations that eliminate detectable levels of serotonin reveals that egl-30 requires serotonin to regulate egg laying. Furthermore, pharmacological response assays strongly suggest that EGL-30 may directly couple to a serotonin receptor to mediate egg laying. We also examined genetic interactions with mutations in the gene that encodes the single C. elegans homolog of PLCβ and mutations in genes that encode signaling molecules downstream of PLCβ. We conclude that PLCβ functions in parallel with egl-30 with respect to egg laying or is not the major effector of EGL-30. In contrast, PLCβ-mediated signaling is likely downstream of EGL-30 with respect to pharyngeal-pumping behavior. Our data indicate that there are multiple signaling pathways downstream of EGL-30 and that different pathways could predominate with respect to the regulation of different behaviors.
- California Institute of Technology United States
- Howard Hughes Medical Institute United States
Male, 570, Behavior, Animal, Protein Conformation, Muscles, Oviposition, Phospholipase C beta, Epistasis, Genetic, Free Radical Scavengers, Nervous System, Animals, Genetically Modified, Isoenzymes, Gene Expression Regulation, Mutation, Animals, GTP-Binding Protein alpha Subunits, Gq-G11, Female, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Alleles, Genes, Dominant
Male, 570, Behavior, Animal, Protein Conformation, Muscles, Oviposition, Phospholipase C beta, Epistasis, Genetic, Free Radical Scavengers, Nervous System, Animals, Genetically Modified, Isoenzymes, Gene Expression Regulation, Mutation, Animals, GTP-Binding Protein alpha Subunits, Gq-G11, Female, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Alleles, Genes, Dominant
29 Research products, page 1 of 3
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).88 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
