Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/srep16...
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Reciprocal regulation of RORγt acetylation and function by p300 and HDAC1

Authors: Ling Lv; Xiuwen Wang; Jing Yang; Lei Han; Bin Li; Qingsi Wu; Yayi Gao; +6 Authors

Reciprocal regulation of RORγt acetylation and function by p300 and HDAC1

Abstract

AbstractT helper 17 (Th17) cells not only play critical roles in protecting against bacterial and fungal infections but are also involved in the pathogenesis of autoimmune diseases. The retinoic acid-related orphan receptor (RORγt) is a key transcription factor involved in Th17 cell differentiation through direct transcriptional activation of interleukin 17(A) (IL-17). How RORγt itself is regulated remains unclear. Here, we report that p300, which has histone acetyltransferase (HAT) activity, interacts with and acetylates RORγt at its K81 residue. Knockdown of p300 downregulates RORγt protein and RORγt-mediated gene expression in Th17 cells. In addition, p300 can promote RORγt-mediated transcriptional activation. Interestingly, the histone deacetylase (HDAC) HDAC1 can also interact with RORγt and reduce its acetylation level. In summary, our data reveal previously unappreciated posttranslational regulation of RORγt, uncovering the underlying mechanism by which the histone acetyltransferase p300 and the histone deacetylase HDAC1 reciprocally regulate the RORγt-mediated transcriptional activation of IL-17.

Related Organizations
Keywords

Transcription, Genetic, Protein Stability, Interleukin-17, Acetylation, Histone Deacetylase 1, Nuclear Receptor Subfamily 1, Group F, Member 3, Article, Histone Deacetylase Inhibitors, Gene Expression Regulation, Humans, Th17 Cells, E1A-Associated p300 Protein, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
gold